首页> 外文OA文献 >Finding Influential Users in Social Media Using Association Rule Learning
【2h】

Finding Influential Users in Social Media Using Association Rule Learning

机译:使用关联规则学习在社交媒体中寻找有影响力的用户

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Influential users play an important role in online social networks since users tend to have an impact on one other. Therefore, the proposed work analyzes users and their behavior in order to identify influential users and predict user participation. Normally, the success of a social media site is dependent on the activity level of the participating users. For both online social networking sites and individual users, it is of interest to find out if a topic will be interesting or not. In this article, we propose association learning to detect relationships between users. In order to verify the findings, several experiments were executed based on social network analysis, in which the most influential users identified from association rule learning were compared to the results from Degree Centrality and Page Rank Centrality. The results clearly indicate that it is possible to identify the most influential users using association rule learning. In addition, the results also indicate a lower execution time compared to state-of-the-art methods.
机译:有影响力的用户在在线社交网络中扮演着重要角色,因为用户往往会互相影响。因此,建议的工作分析用户及其行为,以识别有影响力的用户并预测用户参与。通常,社交媒体网站的成功取决于参与用户的活动水平。对于在线社交网站和个人用户来说,寻找一个主题是否有趣是很有趣的。在本文中,我们提出了关联学习来检测用户之间的关系。为了验证结果,基于社交网络分析进行了一些实验,其中将从关联规则学习中识别出的最有影响力的用户与“学位中心”和“页面排名中心”的结果进行了比较。结果清楚地表明,可以使用关联规则学习来确定最具影响力的用户。此外,结果还表明,与最新方法相比,执行时间更短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号